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I. INTRODUCTION

Within the past few years, as experimental tests of gravity have been

analyzed and refined, and as gravitation theories have been systematically

compared,l most extant theories have been ruled out. Indeed, analysis of

data from existing "solar system" experiments promises to distinguish more

and more clearly between the theories that today remain viable. [For

example, within the next two years, a search for the Nordtvedt effect in

lunar laser ranging data3 should either rule out general relativity (GRT),4

or place a limit of w > 30 on the Dicke coupling constant of Dicke-Brans-

Jordan theory. 5 ] An elegant theoretical formalism, the "Parametrized Post-

Newtonian" (PPN) framework,6 exists for analysis of metric theories 7 in the

limit of weak gravitation and slow motion. All gravitation experiments

that have played key roles in ruling out theories, except the Eitvbs-Dicke

experiment,8 fall within the PPN framework. The Edtvcs-Dicke experiment

itself probably forces the "correct" theory of gravity to be a metric

theory7'9 and, in fact, there are no known complete7 nonmetric theories

which do not violate the Edtvbs-Dicke experiment.

In the last year or so, it has become evident that the PPN framework

10-13
has fundamental limitations. New metric theories of gravity, with

widely varying structures, have been invented which are virtually indis-

tinguishable from one another and from GRT in the post-Newtonian limit.

Existing and proposed solar-system experiments cannot hope to distinguish

between such theories in the foreseeable future. There is, however, a

10-13
strong element of hope: that new theories and GRT differ markedly in

the observable properties of their gravitational waves. With this motiva-

tion, we have embarked upon a program to develop a theoretical foundation
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for the analysis of gravitational waves in arbitrary metric theories of

gravity - a foundation which is theory-independent and analogous to the

PPN framework. (Gravitational-wave phenomena fall outside of the PPN

framework.) We feel that experiments to detect gravitational waves from

astronomical sources can prove to be a powerful experimental tool, in the

foreseeable future, for ruling out gravitation theories.

The idea of building a theory-independent framework for analyzing

gravitational-wave experiments was first conceived of in mid-1972 by Robert

V. Wagoner. At about the same time, and independently, our group was

analyzing the gravitational-wave properties of a particular metric theory -

one that two of us had recently invented.1 3  When our analysis was near

completion (several months after we learned of Wagoner's ideas), we suddenly

realized that our theory exhibits the most general type of gravitational

wave admitted by any metric theory - and that, therefore, with a mere change

of viewpoint, our analysis would become the general framework that Wagoner

had proposed constructing. Upon contacting Wagoner we discovered that he

and Clifford M. Will had already proceeded far toward the construction of

this same framework. We therefore published a brief account of the frame-

work jointly with them in Physical Review Letters.15 This paper presents a

more detailed account of our "Caltech" version of the framework.

In a future paper we hope to treat the generation of waves by particular

sources in arbitrary theories and thereby "move in from the far field."

Our fundamental results are that the most general null or nearly null

wave has six independent polarization modes, which can be classified accord-

ing to their behavior under Lorentz transformations. Various theories admit

some subset (perhaps all) of the six possible modes. If the wave direction
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is known, the modes can be resolved uniquely by feasible experiments; if

the direction of the wave is not known, partial but not complete resolution

can be obtained. In either case detection information limits the correct

theory of gravity.

Section II summarizes the properties of the general waves while Sec. III

gives the details of derivations. Section IV discusses application to

particular theories and their classification within the formalism; Sec. V

gives a complete prescription of how to analyze and classify waves that are

observed by means of gravitational-wave detectors. (For a review of the

prospects of gravitational-wave astronomy, we refer the reader to Ref. 16.)

II. PROPERTIES AND CLASSIFICATION OF WEAK, PLANE, NULL WAVES:

A SUMMARY OF RESULTS

A. Definition of Gravitational Waves in Metric Theories

7
In any metric theory of gravity, just as in GRT, the response of

matter to gravity is determined solely by a universal, covariant coupling

to the physical metric g (Einstein's Equivalence Principle ). The equa-

tion of motion of matter is given by1 7

V T = 0,

where V is the covariant derivative associated with g, and T is the matter

stress-energy tensor. This equation ensures that test particles and photons

travel along time-like and null geodesics of g, respectively. Metric

theories differ only in the manner that matter acts back to generate g -

i.e., only in their gravitational field equations. Some theories postulate

auxiliary gravitational fields, such as the scalar field 0 in Dicke-Brans-
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Jordan theory, 5 which enter into the field equations but do not act on matter

directly.

It is the universality of the coupling to the metric that permits a

theory-independent discussion of the propagation and detection of gravita-

tional waves for metric theories. On the other hand, the emission of

gravitational waves involves the detailed structure of field equations, and

is therefore theory-dependent. Emission will not be treated in this

paper.

Consider an experiment employing matter of negligible self-gravity in

a local region to measure the static or wavelike gravitational fields from

faraway sources. One cannot define the absolute acceleration due to gravity

at a point in the region (Einstein's Equivalence Principle7); only the

relative, tidal acceleration between two points has observable significance.

The Riemann tensor Riem, formed from g, determines these relative accelera-

tions, and is the sole locally observable imprint of gravity.

Consider a freely falling observer at any fiducial point P in the

region. Let him set up an approximately Lorentz, normal coordinate system

{x } = {t,x l } ,

with P as origin. For a particle with spatial coordinates x at rest or

with nonrelativistic velocity in the region, the acceleration relative to

P is (for sufficiently small IxJl)

GRAV3j
1 iojo

where RiOjo are the so-called "electric" components of the Riem due to

waves or other external gravitational influences.
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A gravitational wave in a metric theory involves the metric field g

and any auxiliary gravitational fields that might exist. But the resultant

Riem is the only measurable field. So for this paper we define a "gravita-

tional wave" in terms of its Riem: A "weak, plane, null wave" in a metric

theory is a weak, propagating, vacuum gravitational field characterized, in

some nearly Lorentz coordinate system, by a linearized Riem with components

that depend only upon a null "retarded time," u = t- z/c:

R =R (u).

Vu, which is proportional to the wave vector, is null with respect to the

physical metric g: Vu Vu = 0. In "u = t- z/c," c is the speed of light,

and the coordinates are oriented such that the wave travels in the +z

direction.

Two restrictions appear in this definition: (i) Waves must travel at

exactly the local speed of light, (ii) waves must be exactly plane. These

restrictions turn out to be good approximations in feasible experiments for

all viable metric theories of gravity; see Sec's. III and IV for a discussion

of these points.

The fundamental properties of these waves follow immediately from the

algebraic and differential identities that Riem obeys. There are six

algebraically independent components of Riem in vacuum, (Sec. III proves

this assertion and succeeding ones), which correspond to six modes of

polarization. In a given, nearly Lorentz coordinate frame of the above type,

group these six components into amplitudes of definite helicity s (where

s = 0, ±1, ±2) under rotations about the z-axis. There arise two real
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amplitudes

u2(u), (s = O) ; ¢2 2 (u), (s = 0) ,

and two complex amplitudes

y3 (u), (s = ±1) ; y4(u) , (s = ±2).

Here and throughout this paper one complex amplitude is equivalent to two

real amplitudes. We will always describe a gravitational wave by its six

amplitudes {Y2f Y3' Y44 22} in the six polarization modes of a given co-

ordinate frame.

These amplitudes are related to the "electric" components of Riem,

which govern relative accelerations through Eq. (1), by

Y2(u) = - RzzO(u) , (2a)

1 i
Y(u) = - R + R (2b)3(u 2 xOzO 2 yOzO (2b)

Y4(u) = - R +R + 2i R (2c)
xOxO yOyO xOyO

(22(u) = - RxOx -Ryoyo (2d)

Figure 1 shows the displacement that each polarization mode induces on

a sphere of test particles; 'Y4 and ½22 are purely transverse, Y2 is purely

longitudinal, and Y3 is mixed. If an experimenter knows the wave direction,

he can uniquely determine {Y2' Y3' "4' $22} by measuring the driving forces

in his detector (see Sec. V for further details), and he can reconstruct

Riem. Therefore, currently feasible detectors can obtain all the measurable

information in the most general wave permitted by any metric theory.
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B. Lorentz-Invariant E(2) Classification of Plane Waves

In any metric theory, the local nongravitational laws of physics are

those of special relativity. So it is fruitful to sort waves into Lorentz-

invariant classes, depending on the behavior of the amplitudes under

Lorentz transformations. Observers in different Lorentz frames (e.g., in

relative motion) can then agree on the classification of any wave.

Rather than use the entire Lorentz group relating observers in all

frames, we choose a restricted set of "standard observers" such that (i) each

observer sees the wave travelling in his +z direction, and (ii) each observer

sees the same Doppler shift, e.g., each measures the same frequency for a

monochromatic wave. These standard observers are related by the subgroup of

Lorentz transformations that leaves the vector Vu invariant ["little group,

E(2)"]. The parts of the Lorentz group left out of the little group are

(a) [due to requirement (i)] pure rotations of Vu which merely change the

direction of wave propagation, and (b) [due to requirement (ii)] pure boosts

along Vu which merely change the observed frequency and scale each amplitude

up or down independently. Without requirement (ii), different observers would

see the wave travelling along the +z direction, but generally at different

Doppler shifts. The subgroup relating the standard observers would be bigger

(4 dimensional), but the invariant classes would be the same.

The six amplitudes {[Y2 ' Y3 Y4' 22} of a wave are generally observer-

dependent; their transformation law is given in Sec. III. However, there

are certain "invariant" statements about them that are true for all standard

observers if they are true for any one. These statements characterize

invariant "E(2) classes" of waves: (Notation is explained in Sec. III.)
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Class II6.  Y2 0. All standard observers measure the same nonzero6' 0 l tnadosresmauetesm ozr

amplitude in the Y2 mode. (But the

is observer-dependent.)

Class III5 Y2 = 0 ¶ Y3' All

of Y2 and the presence of Y3. (But

observer-dependent.)

Class N3. Y2 = 0 = 3;' Y4 0

is independent of observer.

Class N2. Y2 = ° = 3; Y4

Class 01. 2 - -Y; y4 = 0

Class O. Y2  0 ° 3; Y4 - 0

standard observers measure no wave.

Class II6 is the most general.

vanish identically, one descends to

presence or absence of all other modes

standard observers measure the absence

the presence or absence of y4 and 22 is

k D22' Presence or absence of all modes

. Independent of observer.

Independent

Independent

of observer.

of observer.

As one demands that successive

less and less general classes.

All

amplitudes

Figure 2

exhibits these relations of generality among the classes. In this paper,

"more (or less) general" for classes always refers to Fig. 2. (For example:

01 is less general than N3, III5, and II6, but neither more nor less general

than N2.) The E(2) class of a particular metric theory is defined as the

class of its most general wave (see Sec. IV for illustrations).

The fundamental theoretical implication of our paper is that the class

of the "correct" theory of gravity is at least as general as the class of

any observed wave.

Once theorists are confident of a particular classical theory of

gravity, they will wish to quantize it. Then it should be possible to

associate the amplitudes [y2 -, 3, Y4, ' 22} with massless quanta of definite

and Lorentz-invariant helicity. Section III demonstrates that the helicity

content of class II6 is not Lorentz-invariant, nor is that of III5.

8
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Furthermore, an associated pathology arises for these classes: The ampli-

tudes form a nonunitary representation of the inhomogeneous Lorentz group,

contradicting the tenets of relativistic quantum mechanics.l8 Attempts to

quantize theories of Class II6 or III5 will therefore face grave difficulties.

These difficulties do not arise for theories of class N3 or less

general: There Y4 and ½22 act like massless quantum fields with s = ±2 and

0.

III. DERIVATIONS

This section may be skipped without essential loss of continuity.

A. Tetrad Components of Riem for Waves

A quasiorthonormal, null tetrad basisl 9 is especially suitable for

discussing null waves. At any point P, the null tetrad (k, e, m, m) is

related to the cartesian tetrad introduced in Sec. II by

k= (2)-2 (e + e) (3a)

1
= (2)-_2 e^(3b)

m = (2)- 2 (e_ + ie^) , (3c)

1
(2) ( - ie) . (3d)

Throughout this section we follow Sec. II in orienting the axes such

that the wave travels in the +z direction; u w t -z/c. Equivalently, we

choose k, one of the tetrad legs, proportional to the vector Vu. It is

easily verified from Eqs. (3) that the tetrad vectors obey the relations:

-k. = m * =l, (4)
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while all other dot products vanish.

We adopt the following notation for null-tetrad components of tensors

X:

X X a.vc'... (5)
Xabc... ~ X v. va... (

where (a,b,c...) range over (k,£,mm).

Central to our later discussions will be the transformation properties

of the components of Riem under the action of some subgroup of the Poincar4

group. In view of this, we first split Riem into irreducible parts: the

Weyl tensor, the traceless Ricci tensor and the Ricci scalar. We follow

Newman and Penrose 1 9 in naming their tetrad components y, i, and A respec-

tively.

In general, the ten yt's, nine ¢'s, and A are all algebraically inde-

pendent. When we restrict ourselves to nearly plane waves, however, we

find that the differential and algebraic properties of Riem reduce the

number of independent components to six by the following arguments:

Consider a weak, plane, null wave. It is characterized by the fact

that the components of its Riem are functions of the retarded time u only.

Of their derivatives, only those with respect to the retarded time u will

be nonvanishing:

Rabcdp = (6)

where (a,b,c,d) range over (k,£,m,m) while (p,q,r,...) range over (k,m,m)

only.

The covariant differential Bianchi identities and the symmetry proper-

ties of R are necessary and sufficient to guarantee that the linearized

Riem is derivable from a metric perturbation,

gv = Rv + hv . (7)
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Using Eq. (6) we see that these identities imply the relations

Rab[pq,I] 3 = abpq, ' (8)

where i is a fixed index. Equation (8) implies that

Rabpq = Rpqab (9)

except for a trivial, nonwavelike constant. Consequently, all nonvanishing

components of Riem must have the form R . Taking into account the

symmetries of Riem, we thus see that there are only six independent, non-

vanishing components. Corresponding simplifications are induced among the

19
Newman-Penrose quantities. For a plane wave, they are

i) Weyl Tensor

Y0 = 1 = 0, (lOa)

2 = - 6 Rkk ' (10b)

1
-3 12 R2kMi , (10c)

y4 Rp -(1d)

ii) Traceless Ricci Tensor

00 = 01 = 10 = 02 = 20 =  (lla)

~22 = - RmI-, (lb)

11 = 2 2 ' (llc)

012 = 21 3 , (Ild)

iii) Ricci Scalar

1
A=-i 22 (12)

11



As indicated in Sec. II, we shall choose the set [{2' T3' Y43 ' 22} (Y3

and Y4 complex) to describe, in a given null frame, the six independent

components of a wave in the generic metric theory. Equations (10) and (11)

give the members of this set in terms of the null-tetrad components of the

Riemann tensor. Equations (2) give the members of the set in terms of the

directly observable "electric" components of the Riemann tensor.

In those cases where one calculates the Riemann tensor from a metric

perturbation h 21 Eq. (7), the relation between T{Y2' Y3' Y4' 2 2
} and

derivatives of hab may be found in Appendix 1.

B. Behavior of Tetrad Components under Lorentz Transformation

Consider two standard observers 0 and 0', with tetrads (k, 2, m, >,)

and (k', ', m', i'); then k = k' cc vu. Suppose 0 has measured the ampli-

tudes {Y2' Y3' '4 ½22} of a wave; how do we predict the amplitudes {Y2"'

3' Y4Y' '22 } measured by O'?

In group-theoretic language, we are asking the transformation properties

of the amplitudes under the "little group" of Lorentz transformations that

leaves the wave vector fixed. The various group representations formed by

the amplitudes {Y2' y¶31 4, 22} provide us with a means for classifying

waves.

The most general proper Lorentz transformation relating the tetrads

that keeps k fixed is2 2

k' = k , (13a)

m' = exp(icp)(m + ak) , (13b)

m' = exp(-ip)(m + ak) , (13c)

' + on + am + ak , (13d)
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where a is an arbitrary complex number that produces "null rotations,"2 3

(particular combinations of boosts and rotations), while cp, which ranges

from 0 to 2~t, is an arbitrary real phase that produces a rotation about e^.

The transformations described in Eqs. (13) form a subgroup of the Lorentz

group which is globally isomorphic to the abstract Lie group E(2), the

group of proper rigid motions in the Euclidean 2-plane. In the latter

group, cp represents the rotations in the plane and a, the translations.

We denote a particular element of E(2) in Eqs. (13) by (cp,c). The law of

composition is (c',a')(c,a) = (p' + cp, a' + exp(icp')a).

The transformation induced on the amplitudes of a wave by (Cp,a) is

Y2 2  (14a)2 2

3' = - i  (Y3 + 3aY 2 ) ' (14b)

e4' = e2i2 (q + 4 + 6 2) (14c)

0'22 022 + + 2ce33 + 2 6cay2* (14d)

Now consider a set of observers related to one another by z-axis rota-

tions (cp,O). A quantity M that transforms under these rotations as M' =

exp(isq)) M is said to have helicity s as seen by these observers. We see

from Eqs. (14) that the amplitudes i2', 3, ' Y4', 22} are helicity eigen-

states. Furthermore, their helicity values can be read off easily from

Eqs. (14), (setting a = 0 = -):

s2 : s = O (15a)

,3 : s - -1 3 : s = +1 , (15b)

s4 s = -2 , : s = +2, (15c)

022: s = 0 (15d)
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C. E(2) Classification of Waves

It is evident from Eqs. (14) that the various amplitudes {y2£' Y3' 4'

0223 cannot be specified in an observer-independent manner. [Example: 0

may measure a wave to have as its only nonvanishing amplitude Ty2(helicity 0),

while O', in relative motion with respect to 0, may conclude that the wave

has, in addition, Ty3 and y4 components (helicities 0, 1, and 2).] We

classify waves in an E(2)-invariant manner by uncovering all representations

of E(2) embodied in Eqs. (14). Each such representation, in which certain

of the amplitudes '!Y2 , ~31 % 022} vanish identically, is a distinct, in-

variant class. The name of each class is composed of the Petrov type of its

nonvanishing Weyl tensor2 4 (except that we do not distinguish between II and

D) and the maximum number of nonvanishing amplitudes {Y2' 3' 'Y41 022} as

seen by any observer (dimension of representation). Both the Petrov type

and the dimension of representation are independent of observer.

The various classes were delineated in Sec. II, they are:

Class II6.  Y2 ~ 0.

Class III5.  2 0 ° Y3'

These two classes form reducible, indecomposable representations of

E(2). (See Appendix 2 for a brief resum6 of the relevant group - theoretic

concepts.) The maximal invariant proper subspace is the 3-dimensional one

spanned by Y4 and ½22' The helicity content of classes II6 and III5 is

observer-dependent.

Class N3 2 s N 3 ; 3 4 0 ¢22

Class N2. Y2 -- °- 3  ; 4 ° 22

Class 01. 2 0 ° 3 i 4 - ;2
Y2 3 0 Y Y4 0 0 22 '

14



Classes N3, N2, and 01 form decomposable representations of E(2) which

decompose into 1-dimensional invariant subspaces spanned by '4 and 22

respectively. Each of these invariant subspaces forms a unitary, massless-

particle representation of definite, Lorentz invariant, helicity (spin).

They are well studied as they occur in relativistic quantum field theory.2 5

Class 0o. T2 = 0 = 3 ; = 0 ' 22'

Class 00 forms the trivial representation.

The foregoing classification scheme is patterned closely after Wigner's

classic analysis26 of wave functions of relativistic quantum particles as

members of unitary, irreducible representations of the Poincar6 group.27

Wigner showed that each such wave function may be taken to have a definite

4-momentum q, and to transform as a member of some unitary, irreducible

representation of the little group that leaves S invariant. One determines

the "spin" of the particle from the eigenvalues of the helicity operator and

its square; the spin of the particle is completely determined once the

representation formed by its associated wave functions under the little

group is known.

For our gravitational waves, VU is null and nonvanishing, and the

little group is E(2). Unfortunately, Wigner's analysis does not apply

since.we are not restricted to unitary representations of E(2). In fact,

as we have seen, the representations generated by ({2' ¶3' T4' 022} are in

general nonunitary and indecomposable. The amplitudes in classes II6 and

III5 cannot be identified with massless particle fields. Consequently, it

is impossible to give a spin decomposition for these waves.

A representation which is reducible and indecomposable can never be

unitary. This applies to the little group E(2), and hence also to the

15



Poincar6 group. In relativistic quantum theory, all invariance groups

18
must be realized by unitary representations. We therefore obtain the

following result: If a theory is of class 116 or III., it is impossible

to quantize it in a way that is Poincar6 invariant with respect to the

local Lorentz metric.

D. Spherical Waves

Thus far, we have based our discussions on the properties of plane

waves. The most physically satisfactory definition of a radiation field

is one that carries energy off to infinity from a bounded source. For

metric theories of gravity, this corresponds to that part of the Riemann

tensor that falls off as l/(distance) asymptotically. Far away from radiat-

ing sources, one may locally approximate these approximately spherical waves

as plane waves. The following argument shows in a theory-independent manner

that the plane wave approximation will not affect the classification scheme.

Adopt a (u,r,, cp) coordinate system in the wave zone, which is assumed

to be almost Minkowskian. The line element is given by

ds 2 = -du 2 + 2dudr + r (do2 + sin2 dp2). (16)

Place the origin of the coordinate system somewhere inside the source.

Single out the l/r part of the outgoing spherical waves:

Rabcd 1 abcd = Sabcd (u,,CP) + 0 1 ) (17)

In the wave zone, observer 0 [r = r0, 0 = P = 0] carries with himself a

Cartesian tetrad (et e, e^, e^) oriented such that e^ is along the in-

cident direction of the wave. The two coordinate systems are related by

16



U = t - z ,

r = z + r0, (18b)

Q = r '+ (18c)

r 0 12
0

+ 0(r2 ) (18d)
0 r 0(

Thus 0 would measure

u x y
Rabcd rO Sabcd (u rO rO + 2( (19)

The differential Bianchi identities then imply

0 -Rab[pq;c] = O(l/r0
2 ), if c , (20a)

=R = 1 S, + 0(l/ro) 2(20b)
ab[pq;£] 3 r0 Sabpq 

+ O(

where semicolon and comma denote covariant and partial differentiation

respectively. It follows immediately from Eqs. (20) that the classification

scheme based on the l/r part of the Riemann tensor is identical to that

based on the plane waves.

IV. APPLICATIONS TO PARTICULAR THEORIES

A. Two-Metric Theories

In all of the preceding discussion we have assumed that the components

of the Riemann tensor are functions of the retarded time associated with the

"physical metric" gg,. i.e.,

17
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R = R (u) , (21a)

where

u auga = . (21b)

This is indeed the proper approach, since the physical metric is associated

with the physical local Lorentz frames, which are in turn the basis for our

classification scheme. In some theories of gravity,lOl 1 3 however, gravita-

tional waves travel along null geodesics of a "flat space," global,background

metric A, while electromagnetic waves (and neutrinos) travel along null

geodesics of the physical metric g. Equations (21) are then not rigorously

satisfied. On the other hand, if z differs from X locally by only a small

amount in the above-mentioned theories, Eqs. (21) are approximately correct

and all of the formalism developed in Secs. II and III is applicalie to a

high degree of accuracy. In all such "two-metric" theories that we have

studied, present experimental limits on "preferred-frame effects"

require, in the mean rest frame of the solar system,

<gap l 10- 2  ,2 (22)

where | l refers to the magnitude of a typical element of M.A, etc. In

fact, if the difference between gab and TE, is due entirely to solar system

or galactic matter, then the 102 7or galactic matter, then the 10 2 in Eq. (22) becomes 10 . Equation (22)

is equivalent to the relation, again as measured in the mean rest frame of

the solar system,

ICg - Ceml 2
< 10 -2 (23)

where c and c are the speeds of gravitational and electromagnetic waves
g em
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respectively. Thus, for all Lorentz observers who move at low speeds

(v << c) with respect to the mean rest frame of the solar system, two-metric

theories that are viable [in the sense of no preferred frame effects and so

compliance with Eq. (22)] may be included in the formalism of Secs. II and

III.

A further important point is that Eq. (23), a distinctive feature of

two-metric theories, suggests that a search for time delays between simul-

taneously emitted gravitational and electromagnetic bursts could prove a

valuable experimental tool. An experimental limit of < 10-8 for Ic -c I/c
g em

would disprove most "two-metric" theories and would stringently constrain

future theory-building. If current experimental efforts continue unabated,

by 1980 one may detect gravitational-wave bursts from supernovae in the Virgo

cluster (_ 3 supernovae per year). Then a limit of

Ic - c I/c < 10- 9 x (time-lag precision)/(l week)
g em

will be possible.

B. Degrees of Freedom Versus Polarization Modes

We have enumerated the various independent gravitational wave modes in

the general metric theory. This does not mean, however, that for a given

theory the maximum number of nonvanishing modes for any observer is equal

to the number of dynamical degrees of freedom2 8 in the gravitational field.

For a given theory, there may be fewer or more degrees of freedom than the

number of modes; if fewer, amplitudes in the various modes are linearly

dependent in a manner dictated by the detailed structure of the theory (see

discussion following Stratified Theories below).
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C. Classification of Particular Theories

Table I gives the E(2) classification (see Secs. II and III) of some

metric theories in the literature (some of which have already been ruled

out, e.g., the conformally flat and stratified theories29). The classi-

fication procedure involves examining the far-field, linearized, vacuum

field equations of a theory and is illustrated below by several examples.

In the examples, the relevant approximated vacuum equations of a theory

will be quoted whenever necessary.

1. General Relativity

Rag = 0 (24a)

From Eqs. (10), (11), and (A1.3) one can deduce that

R R =RR 2
RkWk I= Rmii = Rkm = - , (24b)

or ' 2 = 3 
= 022 = ° (24c)

Since there are no further constraints, y4 ~ 0 and the E(2) classification

is N2.

2. Dicke-Brans-Jordan Theory5

Ocp = 0, (25a)

R - = R -2 (y 1 g ) + 1  (25b)

-2 (25c)

(25b)

The monochromatic plane wave solution to Eq. (25a) is30

iq- x
cP = po + qp1 e (25d)
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where cp0 and p1 are constants and the wave vector g is null. The quantity

P0 is the cosmological boundary value of the scalar field, and (1 is a small

amplitude of a wave (work only to first order in cp1). Then from Eq. (25c),

R = 0, (25e)

and Eq. (25b) yields

-1 iq . x
R = - 1 e qRCD = - go 'C1 e qagB

Thus Rff is the only nonvanishing tetrad component of the Ricci tensor

and one can conclude that

R£kk = Rkm = Rlkfm = 0 A RQm£I (25g)

or

(25f)

/2 = 3 = = (25h)022 and *4 f 0 .

Therefore for the Dick-Brans-Jordan theory, the E(2) classification is

N3.

3. Will-Nordtvedt Theory1 1

C Ka = O (26a)

Rb 2 Rg = Ky +K K - g KK '5
2 C43 a1 71,a I 2 Q4 ,56

+ l K -( K + K ) KC(KY + K Y) -K(KY

The plane wave solution to Eq. (26a) is

iq. x

Ka = Aa ae - + Ba

+ K 'Y) )]

where Aa and Ba are constant vectors and the wave vector q is null. Again,

assume A is small and work only to linear order in that quantity. Theat
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vector Ba is of cosmological origin. Taking the trace of Eq. (26b) and

using Eqs. (26c), (A1.2b), and (A1.4), we obtain

R = 0 = *2 (26d)

Equation (26b) then reads

iq - x
RA = e (q A) q('B) - (B * q) A(q) -a I

Equation (26e) indicates the relations

R /m f 0 , Rm- / O , RH i 0 ,

or, from Eqs. (A1.3),

3 / O , ' 22 / o (26g)

Using Eqs. (26g), Eq. (26d), and the fact that there are no other constraints

or the Riemann tensor (44 / 0), one concludes that for the Will-Nordtvedt

theory, the E(2) classification is III 5.

4. Stratified Theories2 9

0cp=0 ,

g = 2h( p) + (f(

(27a)

(27b)- e2h())dt ®t ,

2h 2f _ 2h 0 0
gQ- = e c + (e e ) 5 a , (27c)

in a particular coordinate system, where f and h are given, unequal functions

of the scalar field cp and dt is a time-like one-form. The wave solution to

Eq. (27a) is
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iq' x

cp= P0 + tp e ~ , (27d)

as in Eq. (25d) and one can compute the Riemann tensor from g o using

Eqs. (Al.1), (27c), and (27d). Contraction with go: then gives the linearized

Ricci tensor:

iqx
Riq =  e (f' + g') qq56 - 2(f' - g') q0 5O(6 qfJ , (27e)

where f' V df/dcp, etc. From Eq. (27e) one finds

R = - 2c1(f' - g') e 0)2 / 0 . (27f)

From Eq. (27f), one concludes I2 i 0 [cf. Eq. (A1.4)], and consequently,

for stratified theories, the E(2) classification is II6

Here we have a perfect example of a discrepancy between the number of

dynamical degrees of freedom and the number of nonzero modes in the E(2)

classification. Stratified theories clearly have only one dynamical degree

of freedom, arising from the scalar field cp- yet some Lorentz observers

see all six gravitational wave modes. The reason for this apparent paradox

is that the "prior geometric" one-form dt introduces another vector into

the problem in addition to the wave vector q - a vector which transforms in

a complicated way under the Lorentz transformations which leave q fixed.

The Ricci tensor does not "point" only along the q direction [cf., Eq. (27e)]

and any pure mode feeds all the other modes under Lorentz transformations.

V. EXPERIMENTAL DETECTION AND CLASSIFICATION OF WAVES

A. The Ideal Detection Experiment

An experimenter attempting any foreseeable experiment to detect gravi-

16
tational waves faces two fundamental limitations which hinder the E(2)
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classification of detected waves: (i) He can measure only the six "electric"

components Ri of Riem, not all twenty.31  (ii) He may not know that wave

direction a priori; he may be hoping to infer it from his data, as does

32
Weber. We will find that the consequences of these limitations are that

the experimenter can generally classify a wave unambiguously only if he

knows the direction a priori, and that he can never determine the direction

using a single detector. Other limitations (antenna pattern, noise, time-

resolution, bandwidth, need for coincidence detection) complicate the task

further, but to treat the heart of the classification problem, we will

ignore them.

Consider an ideal detection experiment: The experimenter uses the

coordinate system of Sec. II. He measures the relative accelerations of

test masses and obtains via Eq. (1) the six components Ri0jo of Riem, with

perfect accuracy and infinite time-resolution. He expresses his data as

a 3 X 3, symmetric, "driving-force matrix" S(t), with components

Sij(t) - RiOjO(u)

here t is his proper time, and he takes his spatial origin at his detector,

so t = u.

The experimenter knows, by time-coherence of the signal or by some

other means, that the wave originates in a single, localized source. He

denotes the wave direction (which he may or may not know a priori) by a

spatial unit vector k. (In previous sections we have taken k = e2; here

it is arbitrary.)

Let us rename, for this section only, the amplitudes of a wave with

direction k, measured at the detector:
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Pl(k, t)

p2(k, t)

p3 (k, t)

p (k,t)

p5 (k, t)

p6 (k, t) -- 22(u)

Let the index A = 1, 2, ... 6 run over these six modes.

pA(k,t) are real.

For the case k = e^, Eqs. (2) imply

+ p6) ½P5

½(P4 - P6 )

- 2(P

s =( ½95- 2P2

The amplitudes

- 2p2

2p3

- 6pl

or

S(t) = ZA pA(e,, t) EA(e.) (29)

where "basis polarization matrices" EA(e%,) belonging to wave direction

k = e2 are defined by

El(ea) - 6(0

0 o\

0 1
E2(e) = - 20

0 0

E3(e) = 2(§3 z \
0
0
1

E5(e%) 2 10)

E (e,)

E-6 z

0 0
-1 0

0 0

1/1 00
=- 2 - 0 10

0 0
(30)

Equation (29) represents S(t) as a superposition of modes with k = 4e,.Equation (29) represents S(t) as a superposition of modes with k =e%
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- Y2 (u) ,

-- Re 3 (u)

- Im {3(U)

- Re 14(u)

-Im T (u)

(28a)

(28b)

(28c)

(28d)

(28e)

(28f)

1
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For any other k, just rotate these matrices: Let R be a 3 X 3 rotation

33 -+
matrix that takes e,, into k:

z

4.

k = Re

Define unit polarization matrices EA(k) for wave direction k by

EA(k) = R EA(e) R

Then for any S(t) and any k, there is the unique representation

S(t) = ZA PA(kt) EA(k) ; (31)

the amplitudes PA(k,t) may be extracted from S(t) by

PA(kt)= CA Trace(EA(k) S(t) , (32)

where CA are normalization constants:

1 1 1
CA= (36' -' , -, 2 , 2)

Equation (32) follows from Eq. (31) and an orthogonality property of the

E(k):

CA Trace(EA(k) EB(k)) 5AB

Equations (31) and (32) embody an important principle: Any measured

S(t) can be represented uniquely as a superposition of the six modes belonging

to any arbitrary wave direction k. Equation (32) specifies the amplitude in

each mode of this wave. This wave is generally of class II6, but it can be

less general for certain S(t) and certain k.

The classification procedure now splits into two cases: k known and

k unknown.
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B. The Case of Known Direction

The experimenter knows k a priori if the source of a gravitational wave

that he detects can be identified with an object observed by means of electro-

magnetic radiation (light, radio, X-ray). There are also purely gravita-

tional methods for determining k. For example, if several detectors a

distance > D apart, each with time-resolution << D/c, detect a sharp wave

burst with pulse-width << D/c, then experimenters can determine k from the

relative time-of-arrival at each detector. For D - radius of Earth,

D/c - 13 msec.

Knowing k, the experimenter extracts from S(t) the amplitudes pA(k,t)

by Eq. (32). Knowing the amplitudes, he classifies the wave unambiguously,

using the prescription given in Sec. II. The theoretical implications of

his results are discussed in subsection E below.

C. The Case of Unknown Direction

If the experimenter does not know k a priori, he cannot hope to

determine it from S(t) without further assumptions; he can fit S(t) equally

well for any k in the sky by using Eqs. (31) and (32). Neither can he

extract the PA unambiguously. However, knowledge of S(t) always provides

information which limits the E(2) class of the wave and also the class of the

correct theory of gravity (see E below).

He limits the possible class of the wave in the following way: For

each arbitrary k in the sky, he computes the pA(k,t) via Eq. (32) and

determines the E(2) class associated with that k. By letting k range all over

the sky, he obtains the set of possible E(2) classes for that wave.

For a given S(t), the following recipe yields a complete analysis of

the possible E(2) classes of the wave. One distinguishes several cases
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according to the form of S(t). Figure 3 diagrams this recipe as a flow-

chart.

Case 1. Driving forces remain in a fixed line. There is a fixed

coordinate system in which

0(t) o O
S(t) = (t 0 . (33)

0 0 0

Pattern of forces is as in Fig. l(d); but propagation direction need not

be as in Fig. l(d). Conclusion: Wave is II6 or N3.

Case 2. Driving forces remain in a fixed plane: There is a fixed

coordinate system in which

S(t) = i(t) v(t) O) (34)

but none in which Eq. (33) holds. Wave may always be II6.  In addition,

two separate determinations must be made: (a) Can the wave be 01' N2, or

N3? (b) Can the wave be III5?

Test 2.a; for 01, N2, or N3.

Subcase 2.a.i. Driving forces are "pure monopole":

f(t) - v(t) , 0(t) -O (35)

Pattern of forces is as in Fig. l(c); but wave need not be pure 22' Con-

clusion: Wave may be 01. (Furthermore, wave cannot be III5; test (b) is

always failed.)

Subcase 2.a.ii. Driving forces are "pure quadrupole":

\(t) - v(t) . (36)

Pattern of forces is as in Fig. l(a) (and the principal axes may rotate
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with time in the transverse plane); but propagation direction need not be

as in Fig. l(a). Conclusion: Wave may be N2.

Subcase 2.a.iii. Driving forces are neither "pure monopole" nor

"pure quadrupole": Neither Eq. (35) nor Eq. (36) holds. Conclusion:

Wave may be N3.

Test 2.b; for III 5 . Wave may be III 5 if and only if there exists a

fixed unit vector k not normal the plane of the forces [i.e.,

k / es ,

in the coordinates of Eq. (34)] such that

k S(t) ·k O . (37)

The complete set of possibilities for Case 2 is II6 plus the outcomes of

Test 2.a and Test 2.b.

Case 3. Driving forces do not remain in any fixed plane: Equation

(34) does not hold in any fixed coordinate system. Wave may always be II6.

It may be III 5 if and only if there exists a fixed unit vector k such that

k S(t). k O . (38)

Note that when the driving forces do not occur in one plane and Eq. (38)

is violated, the wave must be II6.

D. Guessing k

4-

We have emphasized that k can never be extracted from S(t). However,

the fact that a certain S(t) can be fitted by a wave of a certain class less

general than II6 must weigh as strong circumstantial evidence that the wave

is actualLy of that class. If one is willing to assume that the simplest

allowed classification is correct, then k is generally fixed uniquely (up
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to an inevitable antipodal ambiguity, k + - k).

Referring to the recipe above, the information that one can guess in

this way is as follows.

Case 1. If the wave is N3, k lies anywhere in the plane spanned by

e^ and e^ in the coordinates of Eq. (33).
y z

Case 2. If the wave is 01, N2, or N3, k is normal to the plane of the

forces:

k=+ e ,
z

in the coordinates of Eq. (34). If the wave is III5, k

Case 3. If the wave is III5, k is as in Eq. (38).

One can never limit the direction of a II6 wave in

is as in Eq. (37).

this way.

E. Theorerical Implications of Experimental Results

The E(2) class of the correct theory of gravity is at least as general

as that of any observed wave: This is always the fundamental implication

of any observation. We must always qualify, "at least as general," because

in any particular theory a particular source may couple poorly or not at

all to some of the admissable modes, and therefore it may radiate only

special classes of waves. But the observation of a wave of a certain

class always rules out all theories of less general classes.

If the wave direction is unknown, an observed wave cannot be classi-

fied unambiguously (except for some waves of class II6). However, there

is always a least general possible class for each such wave, which limits

the correct theory.

There are still sharper implications for particular theories. In the

case of a well-understood source (e.g., binary star system), each particular



theory should make a precise prediction about the mixture of modes radiated,

leading to a crucial test. We shall discuss this point in a future paper.

In the case of a theory for which the number of degrees of freedom is less

than the dimension of the E(2) class (see Sec. IV.B), the various admissable

modes should appear only in definite mixtures by any source, again leading

to a crucial test. Finally, the difference in propagation speed for light

and for gravitational waves leads to a crucial test for many theories (see

Sec. IV.A).
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APPENDIX 1. USEFUL FORMULAE FOR PLANE WAVES

General linearized Riemann tensor in terms of flat space perturbation

h
'Iv

Rc~s = ½ (hc~ ,y + hy, oB -hoc ,) . (Al.l)

Tetrad components of Riemann tensor in terms of hab:

T R h k(A1.2a)'2 - 6 Rklk 12 kk '

23 -2 Rkm hkm ' (Al.2b)

14 mm (A1.2c)~4 --- R2mlm 2 nun

1**
R h -(Al.2d)~22- - Rmm 2 mm

(where -- d2h/du2).

Tetrad components of Ricci tensor:

Rfk = R kk ' (Al.3a)

R = 2R - (A1.3b)

Rm = RlkQm (Al.3c)

RF- = Rfk . (Al.3d)

Ricci scalar:

R = - 2 Rfk = - 2 Rkk .k (A1.4)
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APPENDIX 2. INDECOMPOSABLE GROUP REPRESENTATIONS

Let G be a group and a a linear representation of G on a linear space

V. uP is reducible, if it has an invariant proper subspace, V1CV. c is

decomposable, if V is the direct sum of invariant proper subspaces. A

decomposable representation is always reducible but not vice versa; Q is

indecomposable, if it is reducible but not decomposable. cp is decomposable,

if, and only if, there is a basis of V for which each ge G is represented

by a block-triangular matrix

g3 g2

with not all g3 vanishing.

Indecomposable representations never occur for a finite group G, for

finite-dimensional representations of a semi-simple Lie group G, or for

unitary representations of any Lie group G. Because of these facts,

physicists are not well acquainted with indecomposable representations.

For a physicist, indecomposable representations have two unpleasant attri-

butes: (i) They are always nonunitary. (ii) There is no analog of Schur's

lemma: An invariant operator is not generally constant on an indecomposable

representation; e.g., "spin" is undefined.

See Ref. 27 or Ref. 34 for a discussion of these concepts.

For waves of E(2) class II6 or III5, we deal with 6- or 5-dimensional

indecomposable representations of E(2). The only finite-dimensional decom-

posable representations of E(2) decompose to the familiar 1-dimensional

unitary representations that describe a massless quantum particle of

integral or half-integral helicity ; these representations arise for

E(2) classes N3, N2, and 01.
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TABLE I. E(2) classification of various metric theories of gravity. See Sec. IV.

E(2) Degrees of Currently Equal to GRT in
Theory class c =C ?
Theory class freedomg em viable? PPN limita?

GRT N2  2 yes yes yes

Dicke-Brans-Jordan$ b N3  3 yes yes no

29
Conformally flat theories 01 1 yes no no

Stratified theories2 9  II6  1 no no

Will-Nordtvedt11  III5 5 yes yes yes

Lightman-Lee 116 6 no yes yes

Ni 10  II6 1 no yes yes

Hellings-Nordtvedt1 2  N3  ? yes yes yes
3

a If a theory can be made to coincide with GRT in the PPN limit6 by a particular choice of

constants and/or possible cosmological boundary values, we put a "yes" in this column.

Typical of scalar-tensor theories.29

c Depends on the particular theory.

arbitrary
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FIGURE CAPTIONS

Fig. 1. The six polarization modes of a weak, plane, null gravitational

wave permitted in the generic metric theory of gravity. Shown

is the displacement that each mode induces on a sphere of test

particles. The wave is propagating in the +z direction (arrow

at upper right) and has time dependence cos wt. The solid line

is a snapshot at wt = 0, the broken line one at wt = t. There

is no displacement perpendicular to the plane of the figure.

Fig. 2. The E(2) classes of weak, plane, null waves, displayed in order

of increasing generality toward the top. Descending along a

line represents specializing the class by demanding that some

amplitude vanish for all observers. One class is said to be

more general than another if it is possible to descend from one

to the other along lines.

Fig. 3. Prescription for finding possible E(2) classes for a wave of

unknown direction k, given the driving-force matrix S(t). Boxes

contain tests involving S(t) and circles contain possible classes.

See text of Sec. V.
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Do driving forces remain in a fixed line?

3.

Are driving forces "pure
monopole ?
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